Grange Primary School

Calculation Policy

Addition

Addition			
Skill Year Group	Concrete	Pictorial	Abstract
Adding 1-digit numbers within 10 Year 1	Use people or objects to show combining two separate 1-digit numbers into a new total.	Move to part-whole models or tens frames using the same representative as the concrete lesson. Children to move onto drawing to represent the calculation. Use of number tracks for counting on.	Progress to using numerals in the part whole models and transforming the tens frames into bar models. End result will be writing a number sentence. 7 $4+3=7$ \square (4) 3
Adding 1 and 2-digit numbers to 20 Year 1 / Year 2	When adding digits that cross 10 , it is important children understand the importance of ten ones equalling one ten. 00000 \square	Move to using familiar models such as part-whole models and number tracks. Year 2 may progress to number lines (alongside the concrete resources) to support the children in understanding how to partition their jumps. $8+7=15$	Progress to using numerals in the part whole models and transforming the tens frames into bar models. End result will be writing a number sentence. $8+7=15$
Adding three 1-digit numbers Year 2	Children should be encouraged to look for number bonds to 10 (with manipulatives highlighting this) or doubles.This develops understanding of commutativity.	Progress to familiar models such as part-whole models. Number lines could be used to help reinforce the bonds to 10.	Progress to using numerals in the part whole models and transforming the tens frames into bar models. End result will be writing a number sentence.

Addition			
Skill Year Group	Concrete	Pictorial	Abstract
Adding 1-digit and 2digit numbers to 100 Year 2	Children should be encouraged to count on from the larger number. Begin with familiar manipulatives that have been used so far and progress onto base 10. Large number squares and number lines may be useful.	Use of number lines, number tracks, hundred squares etc. could help to show bonds to 10 .	Progress to using numerals in the part whole models and transforming the tens frames into bar models. End result will be writing a number sentence. $38+5=43$
Adding two 2-digit numbers to 100 Year 2 / Year 3	Use of base 10 to begin to show the exchange of ones cubes to a tens stick. Familiar representatives could also be used if appropriate. Place value counters may be introduced if children are secure in the value of one and ten.	Blank number lines to allow counting on are essential with children encouraged to jump up in tens to become more efficient.	End result will be writing a number sentence to represent the concrete/pictorial method. Year 3 will use the formal written method when calculating alongside the base 10 and place value counter representations. $\begin{array}{r} 38 \\ +\quad 23 \\ \hline 61 \\ \hline \end{array}$ $38+23=61$
Adding numbers with up to 3 digits Year 3	Use of base 10 and moving onto place value counters when children are secure in understanding the value of the counters.	Children could use a place value chart with drawn marks/counters to support the concrete or blank number lines, encouraging children to jump up in hundreds and tens.	Children should be beginning to represent their calculation as a formal written method for addition. $\begin{array}{r} 265 \\ +164 \\ \hline 429 \\ \hline 1 \end{array}$

Subtraction

Subtraction			
Skill Year Group	Concrete	Pictorial	Abstract
Subtract 1-digit numbers within 10 Year 1	Use of cubes, tens frames with counters etc. to show the physical action of reducing a number's size.	Part-whole models, tens frames and number tracks will support children in seeing the link from concrete.	Part-whole models, and transforming tens frames into bar models. End result to create a number sentence. $7-3=4$
Subtract 1 and 2-digit numbers to 20 Year 1/ Year 2	Counting back, using objects and number lines is crucial. Children will develop onto finding the number bond to 10 when partitioning the subtracted number.	Use of n umber lines, number tracks and visual representations of concrete resources.	Part-whole models, bar models etc. with the end result being to create a number sentence. $14-6=8$
Subtract 1 and 2-digit numbers to 100	Familiar representations to be used, including the use of base 10. Place value counters may be introduced if children are secure in the value of one and ten.	Children may begin using blank number lines to count back and find the difference. Encourage them to jump in multiples of 10 .	From year 3, children to use formal column method alongside concrete representation.
Year 2/ Year 3			$\begin{array}{r} 56 \\ -28 \\ \hline 37 \\ \hline \end{array}$

Subtraction

Subtraction			
$\begin{gathered} \text { Skill } \\ \text { Year Group } \\ \hline \end{gathered}$	Concrete	Pictorial	Abstract
Subtract with up to 3 decimal places	Understanding of the value of decimals is crucial and could be represented on tens frames for example. When children understand the value, use place value counters on a place value grid.	Drawn counters on a place value grid if necessary.	Children should be encouraged to work in the abstract form with concrete and pictorial being used to supplement understanding if necessary. Formal written method is essential at this stage.$\begin{aligned} & 4.1 \\ & 5.43 \\ & -2.7 \\ & \hline 2.73 \\ & \hline \end{aligned}$
Year 5			

Multiplication

Multiplication

Skill	Concrete	Pictorial	Abstract				
Solve 1-step problems using multiplication Year 1/2	Children to use concrete resources to represent problems in many different ways. 6200060 家	Pictorial representations to be used to represent the problems.	In year 1, there is no expectation for multiplication to be recorded formally. In year 2 , the multiplication symbol is to be introduced.$\begin{gathered} 5+5+5+5=20 \\ 4 \times 5=20 \\ 5 \times 4=20 \end{gathered}$				
Multiply 2-digit by 1digit numbers Year 3/4	Place value counters and base 10 to be used to support the understanding of the method.	Pictorial representations of concrete resources could be used to as a stepping stone between concrete and abstract, but is not necessary.	Informal m used in ye introduced \square H	methods a ar 3. Shor to year T 0 34 \qquad			thod are hould be $\begin{array}{r} (5 \times 4) \\ (5 \times 30) \\ \hline\left(\begin{array}{l} 1 \end{array}\right) \end{array}$
Multiply 3-digit numbers by 1-digit numbers Year 3/4	Base 10 and place value counters can be used to support the understanding of the written method. Limit the number of exchanged needed in the questions and move children away from resources when using larger numbers.	Pictorial representations of concrete resources could be used to as a stepping stone between concrete and abstract, but is not necessary.	When moving to 3 digit by 1 digit, short, formal written method is preferred.				

Multiplication

Multiplication

Division

Division

Division

Division

Division

Times Tables

Times Tables

Skill Year Group	Concrete	Pictorial	Abstract
Recall and use multiplication and division facts for the 10 -times table Year 2	Look for patterns in the times table using concrete resources to support. Notice the pattern in the digits-the ones are always zero and the tens increase by 1 each time.	Support the regular counting of forwards and backwards in multiples with a number line or a hundred square.	Verbal recall of the multiplication facts. Able to read and answer written multiplication facts.
Recall and use multiplication and division facts for the 5-times table Year 2	Look for patterns in the times table using concrete resources to support. Notice the pattern in the ones as well as highlighting the odd, even, odd, even pattern. NH M3 MO M3 (348) (3)3	Support the regular counting of forwards and backwards in multiples with a number line or a hundred square.	Verbal recall of the multiplication facts. Able to read and answer written multiplication facts.
Recall and use multiplication and division facts for the 2-times table Year 2	Look for patterns in the times table using concrete resources to support. Notice how all of the numbers are even and there is a pattern in the ones.	Support the regular counting of forwards and backwards in multiples with a number line or a hundred square.	Verbal recall of the multiplication facts. Able to read and answer written multiplication facts.

Times Tables

Skill Year Group	Concrete	Pictorial	Abstract
Recall and use multiplication and division facts for the 4-times table Year 3	Look for patterns in the times table using concrete resources to support. Make links to the 2 times table, seeing how each multiple is double the twos. Notice the ones within each group of five multiples. Highlight that all multiples are even using number shapes to support.	Support the regular counting of forwards and backwards in multiples with a number line or a hundred square.	Verbal recall of the multiplication facts. Able to read and answer written multiplication facts.
Recall and use multiplication and division facts for the 8-times table Year 3	Look for patterns in the times table using concrete resources to support. Make links to the 4 times table, seeing how each multiple is double the fours. Highlight that all multiples are even using number shapes to support. 888888888888888	Support the regular counting of forwards and backwards in multiples with a number line or a hundred square.	Verbal recall of the multiplication facts. Able to read and answer written multiplication facts.
Recall and use multiplication and division facts for the 3-times table Year 3	Look for patterns in the times table using concrete resources to support. Notice the odd, even, odd, even pattern using number shapes to support.	Support the regular counting of forwards and backwards in multiples with a number line or a hundred square. Highlight the pattern in the ones.	Verbal recall of the multiplication facts. Able to read and answer written multiplication facts.

Times Tables

Times Tables

EYFS

Addition			
Skill Year Group	Concrete	Pictorial	Abstract
Counting and adding more	Using people or objects, children add one more to a group to find the new total-link to class topic	Children add one more cube/counter/object linked to topic to a group to represent one more. Can we draw what has happened? One more than 4 is 5	Use number lines to understand how to link counting on with finding one more. One more than 4 is 5 5 is one more than 4 Start to add more than one and understand the link with counting. Could use counters or cubes initially and some may write a number sentence. $4+2=6$
Understanding part-part-whole relationship	Using people or objects, sort them into parts and understand the relationship with the whole. The parts are 3 and 3 . The whole is 6 .	Draw pictures or diagrams to represent the parts and understand the relationship with the whole. The parts are 3 and 3 . The whole is 6 .	Use a part-whole model to represent the numbers. Some may progress onto writing a number sentence. $3+3=6$

Addition			
Skill Year Group	Concrete	Pictorial	Abstract
Knowing and finding number bonds within 10	Start with a group, break it apart and put back together again and form number bonds. 4 and 3 makes 7 3 add 4 equals 7 $7=3+4$	Use five and tens frames to represent key number bonds. Start with using double sides counters/ cubes etc. and move to drawing onto frames. $\begin{aligned} & 6+4=10 \\ & 10=4+6 \end{aligned}$	Use the models from pictorial representation alongside a part-whole model. Show the number bonds. Make sure to include examples where one of the parts is 0 .
Adding by counting on	Children to use their knowledge of counting to 20 to find a total by counting on using people or objects. E.g. There's already 8 children on the carpet. Count on as more children sit down.	Use counters or drawings to represent their counting on strategy. 8 on the carpet	

Subtraction

Skill Year Group	Concrete	Pictorial	Abstract
Counting back and taking away	Arrange people or objects and count how many we have. Remove 1 and see how many are left. 1 less that 6 is 5 6 subtract 1 is 5	Move onto drawing images and crossing out or using counters to represent objects. There are \qquad animals left.	Children count back to take away and use a number line or number track to support the method. Some may move onto number sentences.
Finding a missing part, given a whole and a part	Separate a whole into two parts and understand how one part can be found by subtracting the		
Subtraction within 10	Understand when and how to subtract 1 from a number using an efficient method. Use familiar concrete resources and introduce the concept on a rekenrek. E.g. $5-3=2$	Representations similar to those used throughout policy e.g. five or ten frames, number lines etc. $5-2=3$	Begin to move towards writing number sums which show understanding of number bonds within 10. $5-3=2$

Division, Doubling and Halving

Skill Year Group	Concrete	Pictorial	Abstract
Grouping	Learn to make equal groups from a whole and experiment with finding how many equal groups of a certain size can be made. Use people and objects sorting them into areas or hoops etc. There are 8 children altogether. There are 2 in each group. There are 4 groups.	Represent the whole and work out how many equal groups there are using drawings or small objects (e.g. counters) which represent a person or objects. There are 10 in total There are 5 in each group. There are 42groups.	
Sharing	Share a set of objects into equal parts and work out how many are in each part.		

